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component of the potential. On the other hand, it is 
asymptotic in character and when only a finite number 
of terms are taken the error is less in magnitude than 
the first term omitted. Thus, although it can be useful 
numerically for sufficiently weak anharmonicities its 
accuracy is essentially limited and, for strong anhar- 
monicities, may not be adequate. This is particularly 
relevant when dealing with data of such high accuracy 
that deviations of only a few percent in the tem- 
perature factor become significant. 

Since for the moment expansion, Tin(q), the inverse 
FT, pro(x), always exists, one might have hoped that 
pro(x) could be used to represent the p.d.f, even if 
the perturbation approximation were poor, i.e. if 
T,, (q) differed significantly from T(q). However, the 
examples considered show that pro(X) then has 
regions where it takes significantly negative values 
despite the fact that it is supposed to be approximat- 
ing a positive function. 

Similar considerations apply to the cumulant 
expansion. It can be a useful approximation but 
because of the theorem due to Marcinkiewicz (see 
Lukacs, 1970) it cannot be the Fourier transform of 
any p.d.f.; specifically, it must always be positive and 
therefore cannot follow through a zero of the tem- 
perature factor to the negative values that must occur 
somewhere. Another mathematical difficulty relating 
to this zero occurs because the cumulant form arises 
on taking the logarithm of the moment form and so 
the series for the cumulant form cannot possibly 

converge for values of q beyond the zero where the 
logarithm has its singularity. 

The numerical results do not allow a clear choice 
between the moment and the cumulant expansions. 
Significant differences between the two approxima- 
tions appear only when perturbation theory is starting 
to break down. Under these circumstances a pro- 
cedure that does not rely on perturbation theory is 
desirable. If one wishes to retain the OPP approach 
a suitable procedure would be to express the tem- 
perature factor directly as the FT of the exact 
Boltzmann distribution in accordance with equations 
(1), (2) and (3). Such computations are well within 
the capabilities of modern large computers. 

References 

CRAMI~R, H. (1946). Mathematical Methods of  Statistics. Princeton 
Univ. Press. 

DAWSON, B., HURLEY, A. C. & MASLEN, V. W. (1967). Proc. IL 
Soc. London Ser. A, 298, 289-306. 

KONTIO, A. & STEVENS, E.D. (1982). Acta Cryst. A38, 623-629. 
KURKI-SUONIO, K., MERISALO, M. & PELTONEN, H. (1979). 

Phys. Scr. 19, 57-63. 
LUKACS, E. (1970). Characteristic Functions, 2nd. ed, p. 213. Lon- 

don: Grifl~n. 
MAGNUS, W. & OBERHETTINGER, F. (1949). Formulas and 

Theorems for the Special Functions of Mathematical Physics (Engl. 
transl.), p. 80. New York: Chelsea Publishing Co. 

MAIR, S. L. (1980). J. Phys. C, 13, 1419-1425. 
SCHERINGER, C. (1984a). Acta Cryst. A41, 73-79. 
SCHERINGER, C. (1984b). Acta Cryst. A41, 79-81. 
TANAKA, K. & MARUMO, F. (1983). Acta Cryst. A39, 631-641. 
WILLIS, B. T. M. (1969). Acta Cryst. A25, 277-300. 

Acta Cryst. (1985). A41, 85-89 

The Estimation of Average Molecular Dimensions. 
2.* Hypothesis Testing with Weighted and Unweighted Means 

BY ROBIN TAYLOR AND OLGA KENNARD 

Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England 

(Received 8 June 1984; accepted 6 September 1984) 

Abstract 
The average value (/z) of a molecular dimension may 
be estimated by a weighted (xw) or unweighted (~,.) 
mean. Computer simulations show that ~, can be 
used in hypothesis tests, since the distribution of 
(~, , - /z) /o ' (~,)  is closely approximated by Student's 
t distribution. In contrast, hypothesis tests based on 
the weighted mean are inexact and potentially mis- 
leading. 

* Part I: Taylor & Kennard (1983). 
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I. Introduction 
In a previous paper (Taylor & Kennard, 1983) we 
discussed some of the problems involved in estimating 
average molecular dimensions from crystallographic 
data. The average value of k observations of a 
molecular dimension (xi, i=  1, 2 , . . . ,  k) is usually 
estimated in one of two ways. The simplest procedure 
is to calculate the unweighted mean, ~,: 

k 
x ,= ~'. x,/k, (1) 

i=l 
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the standard error of which is given by 

[ ~(x~)= ~ (x,-~)~/k(k-1) 
i = 1  

Alternatively, a weighted mean (Xw) can be used: 

£~ = w,xi wi, (3) 
i = 1  i I 

where 

wi= 1/cr2(xi). 

Here, o(x~) is the least-squares e.s.d, of x~, multiplied 
by an empirical 'correction factor' to allow for system- 
atic errors in the diffraction experiment. A correction 
factor of 1.5 is probably adequate for most purposes 
(Hamilton & Abrahams, 1970; Taylor & Kennard, 
1985). The standard error of Xw may be estimated 
from the formula ],2 

o'(£w) = 1 w, (5) 
i 1 

In general, the ith observation of a molecular 
dimension can be expressed as 

xi =/z~ + e~ =/z  + (/z~-/z) + ei, 

where/z~ is the true value of the dimension in the ith 
crystal structure and e~ is the experimental error in 
its measurement. As a first approximation, e~ may be 
regarded as a random variable from a normal distribu- 
tion with zero mean and standard deviation o'(x~). If 
the molecular dimension is not significantly affected 
by changes in its chemical and crystallographic 
environment, then 

/x,-~/xj, i ~ j (7) 

and (6) becomes 

x~ = ~ + e~. (8) 

However, if the dimension is sensitive to changes in 
its environment, then 

lx, ~ Ixj, i ~ j, (9) 

i.e. the true value of the dimension in the ith crystal 
structure will differ from the true value in the j th  
structure. In this case, we are effectively trying to 
determine the population mean,/x, of the ~zi, i.e. the 
average value of the dimension over all possible 
environments. 

If we were to estimate the average value of the 
dimension from the ith observation alone, the stan- 
dard error of the estimate would be [o'2(/x)+ 
tr2(xi)]~/2; this quantity may be called the precision 
o f  x~ as an est imate o f  the mean. The first term, o'2(/x), 
accommodates the uncertainty in the estimate due to 
environmental effects, i.e. o2(/.i.) represents the real 
physical variation in the dimension as the crystal-field 
environment is changed. The second term, o-2(x~), 

accommodates the uncertainty in the estimate due to 
experimental errors in the measurement of xi. If 

(2) o'2(/z)> o'2(xi) for all i (i.e. the dimension is very 
sensitive to changes in its environment), the various 
observations will not differ much in precision. Con- 
sequently, the average value of the dimension should 
be estimated by ~,, rather than ~,. Conversely, when 
tr2(/x) is small, the observations will differ in precision 
and the weighted mean may be preferable to the 
unweighted mean. However, if there are uncertainties 

(4) in the o'(xi) [i.e. if o-(xi) is not an exact estimate of 
the standard deviation of e~ in (8)], the weights used 
in calculating £w will be subject to sampling errors. 
The true standard error of £w is then likely to exceed 
the value given by (5). This will also be the case if 
environmental effects are not insignificant, i.e. o'2(~) 
is not negligibly small. 

In this paper, we consider the use of weighted and 
unweighted means in hypothesis tests. Specifically, 
we discuss how to test the null hypothesis 

Ho: £ =/Xo 

against the alternative hypothesis 

Hi" £ ~/z0, 
(6) 

where £ is the estimated average value of a molecular 
dimension and tZo is some postulated value. Depend- 
ing on whether g is an unweighted or weighted mean, 
it is natural to base the test on the statistics 

du = (£u -/Xo)/O'(£,,) (10) 

o r  

dw = ( £ w -  tZo)/ O'(£w). (11) 

Ho will be rejected in favour of H~ if Idol (or Idwl) 
exceeds some critical value, d,. In order to compute 
d~, we must know the significance level of the test 
( =  a)  and the distribution of the test statistic. The 
former may be chosen arbitrarily by the analyst and 
is not considered here. However, the latter depends 
on several factors and is investigated below by com- 
puter simulation. 

II. Methodology: generation of du and d~ 
values by simulation 

Several computer simulations were performed, some 
to investigate the distribution of d, and others to 
investigate the distribution of dw. The procedure used 
to generate simulated values of du and dw was as 
follows. Four parameters were set at the beginning 
of the simulation: sample size k; minimum e.s.d. O'mi n ; 
maximum e.s.d. O'ma x ; variance due to environmental 
effects o2(/x) [in some simulations, a fifth parameter, 
t r(f) ,  was used: see III-3]. Pseudo-random number 
generators (NAG Fortran Library Manual ,  1983) were 
then used to generate an artificial sample of observa- 
tions [xi, o'(xi), i = 1 , 2 , . . . ,  k]. Each o(xi) was chosen 
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1-0- 

at random from a uniform distribution in the range 
O'min-Orma x. Each x~ was drawn from a normal distribu- 
tion* with mean = 1, standard deviation = 
[tr2(/z) + o.2(x~)]1/2. In simulations designed to investi- 
gate d,, the k observations thus generated were used 
to calculate g= and tr(g,),  from (1) and (2) respec- 
tively. The statistic d,, was then computed from (10), 
using/Zo = 1 (this corresponds to the null hypothesis 
being true, since each x~ was drawn from a distribu- 
tion with unit mean). In simulations designed to 
investigate dw, the quantities Xw and tr(~w) were calcu- 
lated from (3) and (5), and dw from (11) (again with 
/z0 = 1). Further values of d,, or dw were generated by 
repetition of the complete procedure. 

III. Results 

III-1. Unweighted mean, environmental effects large 

This is the simplest case. When tr2(/z)>> 0"2(xi) for 
all i, the observations do not vary in precision. If the 
null hypothesis is true, standard statistical theory 
shows that d~ follows Student's t distribution with 
( k -  1) degrees of freedom (Cruickshank & Robert- 
son, 1953). Thus, Ho can be rejected in favour of H1 
if Id.I exceeds the tabulated value of tk-l,~. The test 
wi l lbe  at the 1 0 0 ( I - a ) %  confidence level, i.e. the 
probability of falsely rejecting the null hypothesis will 
be a. For large samples ( k >  - 2 0 )  the t distribution 
is well approximated by the standard normal distri- 
bution. 

111-2. Unweighted mean, environmental effects moder- 
ate or small 

Although ~,, is not the best (i.e. most precise) esti- 
mate of the mean when environmental effects are 
small, it may nevertheless be used, e.g. if the observa- 
tional e.s.d.'s are not available. Since the tr(xi) are 
now comparable with, or larger than, tr(/z), the 
various xi differ in precision. This violates a funda- 
mental assumption made in the derivation of the t 
distribution (Student, 1908). Consequently, d,, is no 
longer distributed as Student's t with ( k - 1 )  degrees 
of freedom (Cochran, 1954). A computer simulation 
was performed to illustrate this point. Ten thousand 
simulated values of d,, were generated, using the 
simulation parameters k = 5 ,  Ormin=0"001,  O'max--" 
0"030, O'(/X)=0. Fig. l (a )  shows a probability plot 
of the resulting d~ distribution against a t distribution 
with (k - 1 ) = 4 degrees of freedom. Small but system- 
atic deviations of the observed points from the ideal 
straight line of unit slope are evident. For comparison, 

* The results described in this paper are therefore based on the 
assumption that x~ is normally distributed. This is probably a good 
approximation for many molecular parameters. Some of the situ- 
ations in which it is not a good approximation will be discussed 
in a subsequent paper. 

Fig. l(b) shows the probability plot produced by a 
second simulation in which tr(/z) was set to 0.3 [i.e. 
>> o-(xi)]. Here, the plotted points lie close to the ideal 
straight line. 

When o-(/x) is small, Cochran (1954) suggested that 
the distribution of d= may be approximated by a t 
distribution, provided that the number of  degrees of  
freedom is reduced from the 'ideal' value of  ( k - 1). 
He gave formulae for estimating the 'effective' num- 
ber of degrees of freedom. However, the deviations 
of the plotted points from the ideal straight line in 
Fig. 1 (a) are small enough to suggest that this adjust- 
ment may not be necessary in practice. In particular, 
the fit between the observed d= distribution and the 
t distribution with ( k -  1) degrees of freedom is good 
at the extremities of the plot, i.e. in those regions of 
the distribution that are important in hypothesis test- 
ing. In order to investigate the consequences of 
assuming that du follows a t distribution with ( k -  1) 

Observed 
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Fig. 1. (a) Plot of observed cumulative probability distribution of 

10000 simulated d, values against cumulative distribution 
expected for a t distribution with ( k - 1 )  degrees of freedom. 
Simulated d= values were generated with parameters k =  5, 
O'mi n = 0 " 0 0 1 ,  O 'ma x = 0"030, tr(/~) = 0. (b) As for (a), except with 
tr(Iz) =0"3. 
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Table 1. Results of simulations investigating distribu- 
tion of d,, as a function of 0-(Ix) 

See text for  explana t ion  o f  symbols.  Table gives percentage  of  
s imulated Idul values that exceeded tk-~.o.os. 

Ormi n -  O'ma x 

0.001- 0.001- 0.001- 
tr(/z) Sample size 0.005 0.010 0.030 

~ k=5  3.6 3.4 3.0 
0.0 k = 10 4.9 4.3 4.5 

I,k =20 4.6 4.7 4.5 

4 7  4 7  
10 4.4 5.0 4.8 

2 20 5.3 5.2 5.1 

! = 5  4.8 5.0 5.0 
0.3 10 5.0 4.6 4.9 

20 5.0 5.3 4-8 

degrees of freedom, even when 0-(/z) is small, we 
performed the following simulation. Six thousand 
values of du were generated, using the simulation 
parameters k = 5, O'min= 0"001, O'max--" 0"005 , O'(t2,)'- 
0. A count was made of the number of occasions on 
which [dul exceeded tk-l,0.05 (i.e. t4,o.o5=2"776). At 
the end of the simulation, there were 216 such 
occasions, i.e. about 3.6% of the du values were 
formally significant at the 95% confidence level. Since 
this is less than the ideal proportion of 5%, the 
assumption that d,, follows a t distribution with ( k -  
1) degrees of freedom seems to be safe. This con- 
clusion was supported by several other simulations 
with various values of k, 0"min, O'max and 0-(~); results 
are summarized in Table 1. 

111-3. Weighted mean, environmental effects negligible 

If 0-(/z) is negligibly small and the 0-(xi) are accu- 
rate (i.e. exact estimates of the experimental standard 
deviations of the xi), the distribution of d~ will be 
normal. Thus, Ho can be rejected at the 95% con- 
fidence level if Idol exceeds 1.96 (since 95% of 
observations in a normal distribution lie within + 1.96 
standard deviations of the mean). However, if the 
o'(x~) are inaccurate there will be errors in the weights 
used to calculate xw and o(~w), and d~ will not be 
normally distributed. This was investigated as follows. 
Six thousand simulated values of dw were generated, 
using the simulation parameters k = 5, 0-min = 0"001, 
0-max=0"005, O'(/t/,)=0. The procedure used in the 
simulation was exactly as described in § II, except 
that the weights used in computing ~w and 0-($w) 
were not calculated from (4), but from 

w,= 1/sE(xi), (12) 

where 

s(x,) = f0-(x,). (13) 

Here, f~ is a number chosen at random from a normal 

Table 2. Results of simulations investigating distribu- 
tion of d~ as a function of 0-(f) 

See text for  explana t ion  of  symbols.  Table  gives percentage  of  
simulated Idwl values that  exceeded  Zo.o5 ( = 1.96). All s imulat ions 
were pe r fo rmed  with o-(/~)= 0. 

O'min- Ormax 

0.001- 0.001- 0.001- 
tr(f) Sample size 0.005 0.010 0.030 

i = 5 5.4 5.0 5.8 
0.0 10 5.3 5.1 5-5 

= 20 4.9 4-9 5.2 

i = 5  6.1 5.1 5.8 
0.1 = 10 5.3 5.9 6.1 

= 20 6.0 6.2 5-5 

~ k=5  8.7 8-6 7.9 
0.2 k = 10 9.5 9-3 8.9 

I, k = 20 9.1 9.7 9-7 

( k=5  15-3 14.8 14-3 
0.3 k = 10 19.7 17.3 16-0 

I,k = 20 22-6 21-7 18.7 

distribution with unit mean and standard deviation = 
0-(f) = 0.1.* The purpose of the procedure was to 
introduce random errors into the weights used in 
calculating Xw and 0-(~w). 

Of the six thousand values of Idwl thus generated, 
368 exceeded 1.96, i.e. about 6.1% of the dw values 
were formally significant at the 95% confidence level. 
Thus, the probability of falsely rejecting the null 
hypothesis was very slightly increased by the random 
errors in the wi. Several other simulations were per- 
formed with different values of k, O'min, Crmax and o'(f) ; 
results are summarized in Table 2. They show that 
the distribution of dw is relatively insensitive to small 
errors in the weights (c.f Cochran & Carroll, 1953). 

111-4. Weighted mean, environmental effects not negli- 
gible 

Ideally, the weighted mean should only be used 
when o-(/x) is negligibly small. However, it may easily 
be used by mistake when o-(tz) is appreciably greater 
than zero. In this case, we may anticipate that dw will 
not be normally distributed even if the o-(x~) are 
accurate. This was confirmed as follows. Six thousand 
values of dw were generated, using the simulation 
parameters k=5, O ' m i n = 0 ' 0 0 l ,  0rmax-----0°005, O'(#)-" 
(O'min + 0 -max) /2  = 0 " 0 0 3  [weights w e r e  c a l c u l a t e d  f r o m  

(4), not from (12)]. A count was made of the number 
of Idw[ values that exceeded 1.96. The result is given 
in Table 3, together with those obtained from other 
simulations with different values of k, 0-m~n, 0-max and 
0-(lZ). The table shows that the distribution of dw is 

* On very rare occasions,  the number  drawn f rom the normal  
distr ibution was less than 0-2. In order  to avoid generat ing very 
small values o f  s(x~), we equated  f~ to 0-2 on these occasions.  
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Table 3. Results o f  simulations investigating distribu- 
tion o f  dw as a function of  tr(lz ) 

See text for explanation of symbols. Table gives percentage of 
simulated Idwl values that exceeded z0.05 (= 1.96). 

0train- Orrnax 

0-001- 0.001- 0-001- 
~(/x) Sample s ize  0 . 0 0 5  0 . 0 1 0  0-030 

~ k = 5  4"4 5"4 4"6 
0"0 k =  10 5"2 5"3 5"1 

[ , k = 2 0  4"9 5'0 4"9 

Ormi n q- O-ma x f k = 5 6"9 10"4 18"3 
k =  lO 7"1 11"4 24"9 

8 { , k = 2 0  7"3 12"8 30"3 

crmi n + Crma x ( k  = 5 13"4 20"9 31 "6 
k = lO 14. l 24.3 42.4 

4 t , k = 2 0  15.6 28-9 51.6 

Crmin + irma x f k = 5 30" l 41 "5 52"8 
k = 10 33.0 50.0 61.9 

2 I , k = 2 0  35.6 52.5 71.8 

extremely sensitive to the presence of environmental 
effects. For example, with the simulation parameters 
given above, some 30% of  the d~ values were formal ly  
significant at the 95% confidence level (i.e. the true 
confidence level of  the test was about 70%).  We 
conclude that the use of  weighted means  in hypothesis  
tests is extremely dangerous when tr(/z) is not negli- 
gibly small.  

IV. Conclusions 

In our previous study (Taylor & Kennard ,  1983) we 
concluded that the unweighted mean  is p robably  
satisfactory for most samples  of  crystal lographic data. 
The present  work reinforces this conclusion since it 
shows that  unweighted  means  may  be used in 
hypothesis  tests with little difficulty. Some approxi-  
mat ions are necessary when  envi ronmenta l  effects are 
small,  but  they are unl ikely  to cause problems in 
practice. In contrast, the use of  d~ in hypothesis  tests 
cannot  be recommended .  This is main ly  because the 
value of  c r ( ~ )  obta ined from (5) may  be a gross 
underes t imate  of  the true s tandard error of  the weigh- 
ted mean  if  envi ronmenta l  effects are not negligible.  

Olga Kenna rd  is a member  of  the external staff of  
the Medical  Research Council .  
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Abstract 

The tensorial classification of all non-magnetic ferroic crys- 
tals is given for all possible macroscopic tensorial properties 
of rank N <_ 4. 

A ferroic crystal can be classified according to the point- 
group symmetry of the non-ferroic or prototypic phase and 
the point-group symmetries of the ferroic crystal's domains. 
Each class of ferroic crystals is denoted by a symbol GFH, 
where F is a symbol denoting 'ferroic', G the point group 
of the non-ferroic phase, and H the point group of one of 

the ferroic crystal's domains (Aizu, 1970, 1976a, b). The 
domains of a ferroic crystal can possibly be distinguished 
by the values of the components of a macroscopic tensorial 
property associated with each of the domains. Whether or 
not one can distinguish some or all of the domains has led 
to the additional tensorial classification of ferroic crystals 
(Aizu, 1969, 1970). Aizu has tabulated the magnetic classes 
of ferroic crystals and the tensorial classification of ferro- 
electric, ferromagnetic and ferroelastic crystals (Aizu, 1970; 
see also Cracknell, 1972). A method has been presented 
(Litvin, 1984) to determine the tensorial classification of 
non-magnetic ferroic crystals for an arbitrary tensorial 
property. 
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